首页> 外文OA文献 >Approximation to density functional theory for the calculation of band gaps of semiconductors
【2h】

Approximation to density functional theory for the calculation of band gaps of semiconductors

机译:密度泛函理论的近似,用于计算半导体的带隙

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.
机译:众所周知,局部密度近似值(LDA)与半占据(过渡态)在计算原子电离势方面非常成功。对于诸如半导体无限系统之类的扩展系统,由于空穴倾向于无限扩展(布洛赫波),因此很难找到半电离的方法。这个问题的答案在于LDA形式主义本身。一种证明,半职业等于在Schrodinger方程中引入空穴自能(静电和交换相关性)。这样一来,论点就变得简单了:由于原子的能量最小,因此必须将特征值减去自能量最小化。然后,人们简单地证明了孔是局部的,而不是无限延伸的,因为它必须具有最大的自能。然后,得出与自相互作用校正方程相似的方程,但仅去除了1/2个电子就对其进行了校正。在带隙和有效质量的计算中,我们使用以原子计算的自能量,并获得了与GW相似的精度,但是它的最大优点是,与标准LDA相比,它不需要进行更多的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号